AltaVista Search Developer's Kit 97

White Paper

Preface

Thiswhite paper isintended for application developers. It provides aquick, relatively detailed overview of the
AltaVigta Search Developer’ s Kit 97 capability set. Contact Bruce Webgter, the AltaVista Search product manager
for an evaluation kit. (brucewebster@diqgital.com)

Check out the Partner Pavilion at http://dtavistasoftware.digital.com for alist of AltaVistaSearch VARsand
System Integrators.

EHEHHEHTM

Executive Summary

Y ou know the information users need isin a database somewhere. Whereisit? How can you
provide essy accessto it? AltaVista Search Developer’ s Kit 97 | ets you build your own search and
retrieva gpplication or add AltaVista Search powered search and retrieval capabilities to database
gpplications and file repositories. Y our users can find what they need quickly and easily without
Specia databasetraining. Best of dl, it isfast and has minimal impact on existing database
applications.

Product Description

The AltaVigta Search Developer’ sKit 97 provides system integrators and software developers with
the tools to integrate the AltaVista Search engine technology into customized search and retrieval
applications. An AltaVista Search Developer’ s Kit 97 powered application controls the kinds of
information users can search for aswell asthe way the software returns and displays resultsto users.

The AltaVigta Search Developer’ sKit 97 includes the AltaVista Search indexing, querying and
results engines. It aso includes gpplication-programming interfaces, APIs, to access and manipulate
them. Documentation and programming examples are aso included for the devel oper’ s usage.

Features / Functions and Benefits

m Developers creste or embed AltaVista powered search functiondity into new or existing
applications with the AltaVista Search Developer’ sKit 97 API's.

API’s, Application Programming Interfaces, allow you to create and manage the AltaVista
Search NI2 index.
API’sto find and track fielded information and documents within databases and largefile
repositories.
API’sfor submitting queriesto your gpplication’s AltaVista Search NI2 index.

m Perform super fast searches on database records or documents, BLOBS, within databases

m Usersdo not haveto use SQL. They usethe familiar AltaVista Search querying syntax to
formulate their queries. Developers can make it even easier by building auser interface that
provides additional smplification.

m Every word and number within your database can be indexed and queried. Thisincludes
fielded information and binary large objects.

m Supportsthe familiar AltaVista Search query syntax. Thisincludes Boolean, phrase, date and
nested queries. Results can be ranked by date or by calculated relevance value.

m Utilizessmal code footprint within the application address space. Memory isused as available
to improve performance.

m TheAltaViga Search Deveoper’sKit 97 is extremely scaable. The FBI isusing the AltaVista
Search Developer’ sKit 97 with an Oracle database that contains over 40,000,000 records.
Query performance wasimproved from 20 plus hoursto less than 10 seconds.

©Digital Equipment Corporation 2 January, 1998

Introduction

The AltaVista™ Search Developer’ sKit 97 provides system integrators and software developersthe
toolsthey need to integrate the AltaVista Search engine technology into custom applications. These
custom applications provide search and retrieval capabilities for data repositories not supported by
standard AltaVista Search products. Typica datarepository examples are non-web based structured
and non structured databases.

m Structured data repositories contain fielded data. Database applications like Oracle, Sybase,
Ingres, Microsoft Access, SQL and DB2 are examples of structured repositories. Document
management systems are another example.

m Undgructured repositories contain discrete files. Shared folders and directories containing large
numbers of documents on file servers are examples of unstructured repository.

Y ou can dso use the AltaVista Search Developer’ sKit 97 to index Gopher Sites.

Customization

Y ou have the ability to customize the kind of information for which users can search, aswell as,
control the way the software returns and displays results.

Requirements

Following are the minimum hardware and software requirements for installing the AltaVista Search
Developer’sKit:

Hardware
Development systems requirements are:

m any Alphasystem running either Microsoft® Windows NT® Version 4.0 or Digitdl UNIX™
Verson 4.0.

m Intel Pentium system with a 133 MHz processor running Microsoft Windows NT Version 4.0.
m Sun SPARC system running Solaris 2.51.

Application runtime requirements are:

m 64 MBof RAM.

m gpproximately 1 GB of disk space after ingtalation for building and storing amoderately-sized
index.

Software

m Clanguage compiler and standard libraries.
m A web browser for viewing the documentation.

©Digital Equipment Corporation 3 January, 1998

Developer’s Kit Components

The AltaVigta Search Developer’ s Kit includes these components.

m Indexing engine—Thisisthe sameindexing engine used by the AltaVista Search Intranet
eXtenson 97 and the AltaVista Public Search Service on the World Wide Web.

m APIs—Thissa of routines alow applications to access and manipulate the AltaVista Search
index.

m Documentation — Covers descriptions of the APIs, APl usage, dong with project planning and
project suggestions.

m Multi—purpose-programming examples— Every programming option is coded in asample
program. These coding examples can be copied and modified by developers. The sample
program has been compiled for you and is available to run on Digitd UNIX or Sun Solaris
(avs_sample), and Microsoft Windows NT (avs_sample.exe).

m Development license— Allows developersto creste, demonstrate and pilot their AltaVista
Search powered solutions. (Runtime licenses are required to implement / sell the AltaVista
Search powered solution.)

The AltaVista Search Developer’ s Kit 97 does not provide a user or query interface to the index.
Thisis part of the development partner's added value. Y ou are free to use any user interface mode!
that meets your customer's needs, for example, Web browsers, Visua Basic-based Uls, existing end
user gpplications, and so forth.

The AltaVista Search Developer’ sKit 97 is not an add—on module or option to the AltaVista Search
Intranet eXtension 97 software. These are separate products. The AltaVista Search Devel oper’ sKit
does not require any other AltaVista Search software to operate. Conversaly, the index you creste
with the AltaVista Search Developer’ sKit 97 isnot compatible with the AltaVista Search Intranet
eXtendon 97 index. Although the same index structure is used in the two products, you cannot build
an index with the AltaVista Search Developer’ sKit 97 that is usable by the AltaVista Search
Intranet eXtention 97. The way the index is created and the results are retrieved are internd to the
AltaVigta Search Intranet eXtention 97 product.

The AltaVigta Search C library lets you create and maintain an inverted word index. Y ou can make
calsto the AltaVista Search index from any language that links with C.

Licensing

The licensing and pricing of AltaVista Search Developer’ s Kit 97 is based on the amount of data
indexed. Datais measured in gigabytes. There are two types of licenses.

m TheDeveopersKit 97 license dlows the devel oper to build, test and demongtrate an AltaVista
Search powered solution.

m Theruntime licenses dlow the developer to implement the AltaVista Search powered solution
for production usage. Seven licenang and pricing tiers are available to provide maximum
flexibility in finding the most cogt-effective solution for your search and retrieval needs.

Aswith the AltaVista Search Intranet eXtenson 97, more than one index can be crested on asingle
server at no additional cogt. If the AltaVista Search powered solution isingtalled on another server;
another AltaVista Search Developer’ sKit 97 runtime license must be purchased.

OEM licensing / business arrangements are a so available. Contact Jerry Loew for details.
(jerry.loaw@digital .com)

©Digital Equipment Corporation 4 January, 1998

How to Use the AltaVista Search Toolkit

The AltaVista Search programming interface implements a number of procedures for managing text
indexes and document filters. Y ou can use the programming interface to do the following things:

m Creaste anew AltaVista Search index.
m Add documentsto the index.

m Usefiltersas helper procedures to parse the contents of adocument and customize theway it is
indexed. Thefiltersthat you use depend on the type and format of the document you are
including in your index.

m Using your own query interface, submit queries to the index and retrieve documents that match
the queries.

m Ddete documents from theindex, or replace existing documents with updated versions.

m Periodically write the contents of the in-memory index to disk, and merge the on-disk
information into asingle, streamlined file.

The sections that follow describe some of these procedures and tasksin more detail. The AltaViga
Search Developer’ sKit 97 Programming Reference provides complete details on every procedure.
Y ou can get a copy of the AltaVista Search Developer’ s Kit 97 Programming Reference by
downloading an evauation copy of the AltaVista Search Developer’ sKit 97.

Creating the Index

To index adocument, your gpplication calls the indexer with each word in the document, passing an
integer location aong with the word to indicate where the word isfound. It then calls a procedure to
give theindexer some datathat is retrieved when a query matches the document in title, filename,
URL, and so forth. The integer locations can be anything you want, but, normaly, you would follow
one of two methods:

m Number the documents sequentially starting at one. The integer location for each word is
then just the number of the document in which it gppears. All the wordsin the same document
have the same location. Thiskind of index is usualy about 10% of the size of the original text.
It dlows mogt types of query, but not phrase queries or filded queries, for example, searching
for aword in thetitle, because the index does not know where each word iswithin the
documents.

m Number the words sequentially. Theinteger location for each word isthen just its number.
Thiskind of index takes about 30% of the Sze of the origind document. It allows phrased
queries and fielded queries. Thisis how the AltaVista Search Service on the World Wide Web
usestheindexer.

Y ou could aso use a hybrid of the above two methods. For example, you can number the words
within atitle but put dl words after thetitle at the same location. In thisway you could use phrase
queries on thetitle, but not in the body of the document. The indexer does not know what the
locations mean aslong as documents do not overlap in the location space. To learn more about
locations, see “ The Importance of Locations’ in the AltaVista Search Developer’ sKit 97
Programming Reference.

©Digital Equipment Corporation 5 January, 1998

Y our application should follow these basic stepsto create an index:

1. Opentheindex with read/write capabilities using the avs_open function (if the index does not
yet exig, this function cregtesit).

2. Add documentsto the index using the avs_newdoc function.

3. Cdl avs makestable to commit the new documentsto disk. The newly added documents are
not searchable until the call to avs_makestable occurs. This procedure also deletesthose
documents marked for deletion by the avs_deletedocid procedure.

4. Cdl avs closeto closetheindex.

Adding a New Document to an Index

Y ou can add new documents, update existing documents, and delete old documentsin your index at
any time. You will find it is more efficient to do several additions and deletions at once, rather than
doing them one at atime. Users can query the existing index while the additions and deletions take
place.

Thisdiagram illugtrates the interaction of your application code and the AltaVista Search library
during the addition of a new document to the index.

()
v v v v

avs_open avs_newdoc avs_makestable avs_compact avs_close

v

[AVS Library }

v

{ Application’s Filter Function J

v y y v v

avs_addword avs_setdocdate avs_setdocdata avs_addfield avs_addliteral

From your application, you make the appropriate calls to open the index you are populating. Use the
filtersto process or convert the documents you are adding to your index. Y our application cals
avs_makestable to write the index to disk, and closes theindex. To access the newly built index, use
the query interface you have created and start querying the index.

©Digital Equipment Corporation 6 January, 1998

Using the AltaVista Search SDK with Database Applications

The following steps describe the process you use to cregte an index containing the contents of your
database:

1. Map the contents of the database, for example, tables, records, or reports, into documents.

2. For each document, specify aURL, an SQL ingtruction, and so forth, that can be used when a
user's query getsahit on the document.

3. Usingthe AltaVista Search Developer’ sKit cals, place the document with the URL and SQL
ingtructionsinto the index.

4. Decide how to access query results:

The URL can specify amethod to retrieve the record through a cgi-bin style interface.

The URL can refer to a page whose contents refer to the person making the query to the
"owner" of the database for moreinformation.

The URL can load a plug-in which then uses native database calls from the client system

into the database.
1. hap the contents 2. Specify a 3. Add documents
of the database unique identifier to the index
into documents for each docurment using the AP

et
vy iy
=] e g™
R e
_______ Byigiy oo
[
. i P o0z
T LT
T T ws
OO
quenTpa=q
cgi scrpt
% plug-in code us=ing S
native database calls
5. Decide how 4. Cregte a
. to retriewe seanch user interface
web page refeming the user resutts from for querying
to the database ouner the databaze the index

©Digital Equipment Corporation 7 January, 1998

Creating a Filter Procedure

The avs_newdoc procedure defines ablock of text as adocument and establishes an identifier with
which the document can be found in the index. The avs_newdoc procedure dso cals afilter, which
iswritten or supplied by you, the application programmer.

Thefilter doesthe bulk of the work of preparing the document to be indexed. It isat the filter stage
where any necessary document type conversion takes place. Cal the filter function using the
following required arguments:

IN avshdl _t idx (i ndex handl e)

IN void *pFnare (information identifying the docunent)
IN unsigned long startloc (starting location for addi ng words)
QUT unsi gned | ong *pNumMor ds (nunber of words added to the index)

Oncethefilter isfinished processing ablock of text, it can passthetext (in theform of aline, a
paragraph, or even the entire document), to the avs_addword procedure. The avs_addword
procedure parses the text into words and adds those words to the index. It interprets as aword any
sequence of letters and/or digitsthat is surrounded by spaces or other non-aphanumeric characters.
When it adds aword to the index, the avs_addword procedure preserves the case of the word asit
appears in the document. If the word contains any uppercase letters, the software also indexes a
lowercase verson of the word, to support case-insensitive searching.

In addition to preparing the document so that each word in it can beindexed by avs addword, the
filter can aso perform the following functions.

m Set adatefor the document (avs setdocdete).
m Specify adatagring to be returned as the result of a search (avs_setdocdata).
m Identify certain wordsto be indexed asfields (avs_addfield).

For example, if you are indexing mail messages and want usersto be able to search based on the
subject line of amessage, you might do the following. First, you would identify line 3 of each
document as the "Subject:” field. Next, you would use the avs_addfield procedure to index it as
such.

The Importance of Locations

The avs_newdoc procedure, in cooperation with thefilter, keepstrack of the starting and ending
location of documentsin the index. This prevents documents from overwriting other documentsin
the index.

When the avs_newdoc procedure calsthefilter, it passesthefilter alocation at which to start adding
wordsto theindex. When the filter starts adding words, it in turn passes the starting location to the
avs addword procedure. Based on the starting location, the avs_addword procedure increments the
location number for each word that it indexes, thereby assigning each word a unique virtua address
in theindexed document.

If thefilter callsavs_addword multiple times (for example, once for each line in the document), the
filter increments the starting location each time by the number of words indexed in the previous
avs addword procedure.

When thefilter completesitswork, it returnsto avs_newdoc the total number of wordsthat it added
to the index. The indexing software uses this number to mark the end location of the document.

Location information is Significant because without it, agroup of documentsin theindex isactualy
just one long string of words. The boundaries between documents and words are important for
finding and returning meaningful search results. In addition, word location isimportant for

©Digital Equipment Corporation 8 January, 1998

processing advanced queries where the position of certain wordsin relation to each other is
important. Examplesinclude.

m Searching for phrases

m Processing the NEAR advanced search operator

m Searching for certain words within a specified field

The following figure shows how two very short documents would be stored in the index database.

Documentt Document2

. . Anather
wiord | this [a short [[document another |[E¥ED sharter oane
Location | 1 z 3 4 = G T g 9

Asthefigureillustrates, each word is actually stored as aword-location pair, and the index dso
contains information about the beginning and ending locations of each document. Document1 starts
at location 1, and Document?2 starts at location 6.

In Document?2, the first word contains an uppercase letter, so theword isindexed twice: once with
case preserved and oncein dl lowercase. Both versions of the word are at the same location, so that
the word would be found appropriately, regardiess of whether a query is case sendtive or case-
insendtive.

Searching the Index

The AV S programming interface supports both smple and advanced searches.

Y ou can perform simple or advanced (Boolean) searches by using the avs_search procedure. For
performing a ssmple search, this procedure supports the basic operators + and - which indicate
words or phrasesthat are required or prohibited in the search results. avs_search dso alows
advanced search capabilities that support the Boolean logic operators AND, OR, NOT, and NEAR,
aswdl| asthe ahility to specify ranking words that are different from the words in the search query.

Follow these basic steps to search the index:
1. Usetheavs search procedureto initiaize a search.
2. Cdl avs _getsearchresultsto retrieve specific documents that meet search criteria

3. Optionally cal any of the following procedures to retrieve additional information about search
results

avs search_getdataen
avs search getdata
avs search getdate
avs search_getdocid
avs search _getrdevance
4. Useavs search _closeto end the procedure and free the resources alocated for the search.

Both smple and advanced searches use an avs_options data structure, in which you can specify the
maximum number of documentsto return, and a date range within which you want to congtrain the
search. The options structure is defined in the avs.h header file. Y ou can call the

avs default_options procedureto initidize its default values.

©Digital Equipment Corporation [e} January, 1998

Understanding Simple and Advanced Search
Both the smple and advanced search procedures follow the same basic rules for processing queries:

m Liketheindexer, the search engineinterprets aword as any string of letters and digitsthet is
delinested by non-aphanumeric characters. Consequently, AltaVista Search ignores
punctuation except to interpret it as a separator for words.

m A group of two or more words enclosed in double quotes indicates a phrase. Phrasing ensures
that the search engine finds the words together, instead of looking for separate instances of each
word individually.

m Anagerisk (*) following three or more charactersindicates awildcard; the search engine will
find al words that match the specified pattern.

m Casesengtivity of asearch is based on the case of each word in the query. A word in all
lowercase letters results in a case-insensitive search, whereas if aword contains any uppercase
|etters, the software searches for an exact-case match.

Using logical operators to refine a search

Both smple and advanced searches support the use of various operators that can help you refine the
results of asearch.

Simple Search Operators

Simple search supports two basic operators:

Function

+ Includes only documents containing all specified words or
phrases in the search results

- excludes documents containing the specified word or phrase
from the search results

Simple search operators must directly precede the word that the user wants to include or exclude,
with no space between the operator and the word.

For example, the following Smple query expression requests documents that must contain the word
results and can aso contain the phrase year end:

"year end" +results

The following Smple query requests documents that must contain the field Subject:reor ganization
and must not contain the field Date: 07/07/97. The documents can also contain the word CEO but
are not required to.

CEO +Subj ect : reor gani zati on -Date: 07/ 07/ 97

©Digital Equipment Corporation 10 January, 1998

Advanced Search Operators

The following are the advanced search operators and their meaning:

Keyword Symbol Action
Finds only documents containing all of the
AND & -
specified words or phrases.
Finds documents containing at least one of
OR | -
the specified words or phrases.
Excludes documents containing the
NOT ! o~
specified word or phrase.
Finds documents containing either specified
NEAR ~ words or phrases within 10 words of each
other.
For example,

The following query requeststhat ether of the words apple or pear appear in the same document
with ether of thewordstart or pie

(apple OR pear) AND (tart OR pie)

The following query requests that both the words spreadsheet and training appear in adocument's
title: fied.

title: (spreadsheet AND training)

Searching for Literal Entries Containing Special Characters

Once you have added the literal index entries with the avs_addliteral function, you can perform an
advanced search to find the literd string. If the string you are looking for contains specid characters
(for example, the forward dash (/)), you can use curly braces ({}) in the query string asin the
following example: { cnn/xyz}. All characters between the matching curly braces are treated asa
word except the agterisk (*) which gtill works asawildcard.

Using Dates in Your Application

When you index your documents, you can add dates through the avs_setdocdate procedure. A filter
calsthis procedure. Once the dates are in the index, you can use the dates or date rangesto limit
your searches. The dateisreturned in the search results.

Theindex is capable of storing dates from 01-01-1970 to 02-05-2036. It islimited by the 16-bit
storage capabilities.

Y ou can limit your query with a date range added as an extra Boolean term. The format of the date
range is [dd/mm/yyyy-dd/mm/yyyy]. If you omit the beginning date, your query will return
everything in the index with a date before the end date. If you omit the end date, your query result
will contain al documents with dates after the beginning date. If you want only the documents
indexed on one date, use the same beginning and ending dates.

Understanding Relevance Ranking

A festure of smple or advanced searching isthe optiona ranking of results based on their probable
relevance to the search query.

The search engine ranks the results of a search based on aweight vaue assigned to each word in the
query, and aresulting overal relevance rating of each document that meets the search criteria

A document earns a relevance rating based on the number of words in the search query that it
contains, and the weight vaue of each of those words. The document containing the most words

©Digital Equipment Corporation 11 January, 1998

with the highest weight value is congdered most relevant. The closer therdevanceratingisto a
vaue of one (1), the more likely it is that a document meets the search criteria

A search result can al'so have ardevancy ranking of zero (0). Inthis case, dl results have the same
weight or are equally relevant. A relevancy ranking of zero can happen in the case where the user
did not specify aranking in his query.

Theweight of aword is determined by the number of occurrences of that word in the entire index. A
word that occurs less frequently in the index earns a higher weight, based on the assumption that it is
more precise and specific than aword that occurs frequently.

For example, the word "programming" might occur many timesin an index, whereas theword
"COBOL" would probably occur less frequently. "COBOL" would be given ahigher weight than
"programming"” in asearch query containing both words. Because a document containing only the
word "COBOL" would be more likely to match the searcher's interest than a document containing
only the word "programming.” A document containing both "COBOL" and "programming” would
earn the highest relevancy ranking.

Note: The postion of the word in the document, and the frequency of occurrence of thewordin a
single document, have little or no bearing on the ranking of a document. The most significant factor
in determining ranking is the combined weight of wordsin the search query. In addition, the search
engine considers only words without an operator preceding them when it does ranking. If operators
precede dl words in the search query, the results are returned in no particular order.

Managing a Growing Index

Onceindexing isin progress, there are several things you can do to manage the contents:

m Useavs makestable to write the contents of the in-memory index to disk.
m Useavs compact to merge and streamline existing index files on disk.
m Useavs ddetedocid to remove an obsolete document from the index.

One of the reasons AltaVista Search indexing is so fast is that newly indexed information is stored
in memory until your application explicitly writes the information to disk. The avs makestable
procedure writes the most recent index content to disk and integrates it with the existing index. Asa
rule of thumb, you should call this procedure after approximately half million words are indexed.
This action preserves the data and prevents the index from consuming too much memory. Y ou
should dso cal the avs makestable procedure before closng the index.

Each time you call the avs makestable procedure, the newly added document information in
memory iswritten to anew, separate file on disk. So after several avs makestable calls, the on-disk
index will actually consist of severd files. Y ou should periodicaly usethe avs compact procedure
to merge the exigting filesinto one. Y ou might compact the index once aday, during periods of least
frequent use. Theindex is till available for queries during compacting, but you cannot add, update,
or delete documents until compacting is complete. When compacting the index would be
detrimenta to your system resources, cal the avs compact_minor. Thiswill cause compaction
without recovering space from deleted index entries.

Occasiondly, adocument may become obsolete and you will need to delete it from the index. Use
the avs_ddetedocid procedure to remove the document from the index database. Pass the identifier
that the document received when the avs_newdoc procedure created it. The document will be
marked for deletion and at the next call to the avs makestable procedure, it will be removed from
the index. Note that compacting the index also frees the space occupied by deleted documents.

©Digital Equipment Corporation 12 January, 1998

Analyzing Entries in the Index

The AltaVista Search programming interface provides away to examine the contents of an index
onceit has been created. Y ou can usethe avs_count and related procedures as a diagnostic tool to
test for the presence of a specific word or word stem in the index, or to get a count of words or
groups of words. Y ou might use the count procedures to learn why users do not get the results they
expected from aquery. Y ou can aso use the count procedures to obtain agenerd idea of the
makeup of your index.

To enumerate entriesin an index,

1
2.

5.
6.

Usethe avs_open procedure to open theindex in read mode.

Useavs_count to initialize the counting process, specify aword or word prefix to search for,
and obtain a handle for the count. To enumerate the entire index from ato z, specify anull
vaue for the word (pWordprefix) argument.

Pass the count handle to avs_countnext, which retrieves the first index entry. Continue calling
avs_countnext to find subsequent entries that match the search criteria, until the procedure
returns NO_MORE_WORDS.

Useavs _count_getcount to return the total number of wordsin the index that match the current
search criteria

Useavs count_getword to retrieve the word associated with the current count.

End the procedure with avs_count_close.

Definition of Terms

Some basic terminology:

Document -- A document isthe highest level of aggregation recognized by the search engine.
A context handle identifiesit.

Filters-- One or more procedures that process adocument and reduce it to a series of
indexable phrases (words).

Handle -- The name of the index file you are cresting or updating.

Index -- The object that stores and processestext retrieval information. Theindex requiresa
disk directory where it stores data needed to process search requests. Search requests return a
reference to a document.

L ocations -- Provide relative positioning within a document, phrase, or entire collection of
documents.

Phrase -- Thelowest level of content indexing -- typicaly asingle word.

Query -- The act of searching for aunique word or wordsin an index and returning linksto
filesthat contain the word or words.

Word -- A contiguous string of aphanumeric characters, bounded by non-alphanumeric
characters (like spaces or specid characters), asdefined in the ISO Latin-1 standard

©Digital Equipment Corporation 13 January, 1998

The AltaVista Search Developer’ sKit 97 is being used by many organizations to improve ad hoc
query capabilitiesinto established database applications. Users receive improved speed and
performance. Database administrators improve end user satisfaction without adding additiona loads
to their database application’ sinfrastructure.

The FBI isusing an AltaVista Search Devel oper’ sKit 97 powered solution to provide ad hoc query
capahilities to a 40,000,000 record Oracle database. This AltaVista Search powered solution
reduced user query time from 24 hoursto less than 14 seconds. Just as importantly, queries are no
longer coded in SQL. Users submit queries by pushing Ul buttons, selecting fields from dialog
boxes and entering ad hoc information into Smple fields.

Y ou can order the AltaVista Search Developer’ sKit 97 from Digita or from your Digital resdller.
Y ou can aso try an evauation copy by contacting the AltaVista Search product manager at
bruce. webster@digital.com. The evaluation kit aso contains afull documentation set.

Additiona information can be obtained from the AltaVista Software web Ste at
http://dtavisa.software.digital .com.

Return comments and suggestions to the AltaVista Search Marketing manager at
bob.lehmenkul er@digital.com.

Notice

Theinformation in the AltaVista Search Software Development Kit help system is subject to change
without notice and should not be construed as acommitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errorsthat may appesr in this
system.

The software described in this white paper is furnished under alicense and may be used or copied
only in accordance with the terms of such license.

Redtricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph ©(1)(ii) of the Rightsin Technical Data and Computer Software clause
a DFARS 252.227-7013.

AltaVida, Digital UNIX, and Alphaare trademarks of Digital Equipment Corporation.
All other trademarks and service marks are the property of their respective companies.
© Digital Equipment Corporation 1996, 1997. All Rights Reserved. Produced inthe U.SA.

©Digital Equipment Corporation 14 January, 1998

